
CHAPITRE 9 - ELECTROLYSES

L'ELECTROLYSE EST UNE TRANSFORMATION FORCEE.

- le générateur fournit l'énergie nécessaire pour assurer la circulation des porteurs de charges dans le circuit. Une partie de cette énergie est convertie en énergie chimique, l'autre est perdue par effet Joule dans le circuit.
- Au cours d'une électrolyse, le système s'éloigne de l'état d'équilibre : la valeur du quotient de réaction Qr s'éloigne de celle de la constante d'équilibre K.

PROCESSUS CHIMIQUES.

Des électrons partent de l'électrode reliée à la borne ()
du générateur : l'espèce chimique qui perd des électrons
est:

A l'Anode se produit une

Des électrons arrivent à l'électrode reliée à la borne ()
du générateur : l'espèce chimique qui gagne des électrons
est :

A la Cathode se produit une

Plusi	eurs	espèces	chimiques	(ions	de	la s	olut	ion,	atomes
des	éled	ctrodes,	molécules	d'e	au)	pe	uve	nt	réagir
I				perm	ette	nt	de	dét	erminer
les r	éacti	ons qui or	nt lieu à cha	aque é	élect	rod	e.		

QUANTITES D'ELECTRICITE.

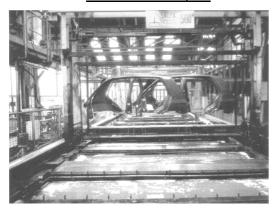
La quantité d'électrons échangés pendant la durée Δt peut être déduite du tableau d'avancement de la réaction, et reliée aux quantités de réactifs disparus ou de produits formés.

	a. Ox1 +	b. Red2 =	c.Red1 +	d.Ox2	n _{e-} échangés
x = 0	n_1	n_2	0	0	0
x(†)	n ₁ - a.x	n ₂ - b.x	c.x	d.x	n _{e-} . x

APPLICATIONS DE L'ELECTROLYSE.

→ Accumulateurs.

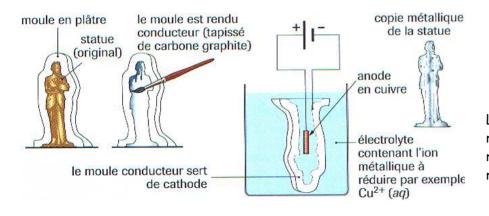
Un accumulateur est un générateur électrique rechargeable : il se comporte comme une pile lors de sa décharge, et fonctionne en électrolyseur lors de sa charge : les réactions aux électrodes sont alors inversées.



Accumulateur cadmium-nickel

Accumulateur au plomb

→ Industrie chimique.


Certains métaux sont préparés par électrolyse de solutions aqueuses (Zinc) ou par électrolyse d'un mélange fondu (aluminium)

De nombreux métaux sont purifiés par électrolyse « à anode soluble » (cuivre).

D'autres produits chimiques sont obtenus par électrolyse (dihydrogène, dioxygène, dichlore, soude).

⇒ Galvanostégie et galvanoplastie.

La galvanostégie consiste à déposer un film métallique sur des métaux pour les protéger ou les embellir : l'objet à « plaquer » est placé à la cathode, la solution électrolytique contient l'ion métallique correspondant au « plaquage » désiré.

La galvanoplastie consiste à reproduire des objets en réalisant des moules dont on rend la surface conductrice.